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Abstract

As artificial intelligence (AI) systems and behavior
models in military simulations become increasingly
complex, it has been difficult for users to understand the
activities of computer-controlled entities. Prototype ex-
planation systems have been added to simulators, but
designers have not heeded the lessons learned from
work in explaining expert system behavior. These new
explanation systems are not modular and not portable;
they are tied to a particular AI system. In this paper,
we present a modular and generic architecture for ex-
plaining the behavior of simulated entities. We describe
its application to the Virtual Humans, a simulation de-
signed to teach soft skills such as negotiation and cul-
tural awareness.

Introduction
The complexity of artificial intelligence (AI) systems in sim-
ulations and games has made it difficult for users to under-
stand the activities of computer-controlled entities. In simu-
lations and games used for training, the explainability of be-
haviors is essential. Students must understand the rationale
behind actions of simulated entities and how their actions
affect the simulated entities.

The military has traditionally used live exercises for train-
ing; the principal tool for learning from these exercises has
been the after-action review (AAR). US Army Field Manual
25-101, “Battle Focused Training”, gives recommendations
on conducting an AAR, and states that “The OPFOR [op-
posing forces] can provide valuable feedback on the training
based on observations from their perspectives...the OPFOR
can provide healthy insights on OPFOR doctrine and plans,
the unit’s action, OPFOR reactions to what the unit did.”
(Army 1990)[Appendix G] OPFOR are often played by in-
structors and participate in the AAR giving their viewpoints
not only as opponents in the exercise but also as teachers
assessing trainee performance. Friendly forces also partici-
pate in the AAR, and provide insight on how trainee orders
translate into the behavior of units and individual soldiers.
Despite the importance of AARs, military simulators cur-
rently do not provide this type of experience. Such simu-
lators can present mission statistics (e.g., casualties, tactical
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objectives achieved) and replay events from the simulation,
but neglect the causes behind these statistics and simulation
events. What is missing in the AAR are the simulated enti-
ties (both OPFOR and friendly forces) to present their view-
point on what happened and why, and an AAR leader to en-
sure students are asking the right questions and learning how
to improve their performance.

Military simulations are also used as predictive tools; as
such, their AI systems must be validated as behaving realis-
tically and according to military doctrine. Detailed specifi-
cations are drafted for such AI systems; the resulting behav-
iors are put under heavy scrutiny. In most cases, because
observers have no way to question AI-controlled entities,
the observer’s only recourse is to watch numerous simula-
tion runs, looking for cases where faulty reasoning results in
an incorrect action. For example, to detect an error where a
rifleman entity fails to check its rules of engagement before
firing its weapon, the observer must watch simulation runs
until a situation occurs where the rifleman fires its weapon
but its rules of engagement forbid this action. A better ap-
proach would be to question the entity about a single weapon
fire event, and see whether checking the rules of engagement
is part of its reasoning.

Figure 1 shows a screenshot of the user interface of our
explanation system for the One Semi-Automated Forces
Objective System, a military simulation (Courtemanche &
Wittman 2002), and introduces the concept of an explana-
tion system for simulated entities. Users select a time point
to discuss, an entity to be questioned, and the question it-
self. Some of the questions are specific to the particular en-
tity (e.g., what is your health?) while others concern a larger
group (e.g., what is your unit’s task?).

Two of the first explanation systems for simulation were
Debrief (Johnson 1994) and Explainable Artificial Intelli-
gence for Full Spectrum Command, FSC (van Lent, Fisher,
& Mancuso 2004). In Debrief, Johnson built explanation
capabilities into Soar (Laird, Newell, & Rosenbloom 1987)
agents that were part of battlefield simulations. van Lent et
al. added explanation capabilities to a training aid developed
by commercial game developers and academic researchers.
van Lent et al. coined the term “explainable artificial intelli-
gence” (XAI) to describe the ability of their system to sum-
marize the events of the game/simulation, flag key events,
and explain the behavior of computer controlled entities.
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Figure 1: Interface to XAI for OOS

While novel, this research did not address how lessons
learned from explaining expert system decisions (Swartout
& Moore 1993) applied to explaining the behavior of sim-
ulated entities. Swartout and Moore advocated building a
high-level knowledge base containing facts about the do-
main and problem-solving strategies, and using an automatic
program writer to build an expert system from this specifica-
tion. The problem is more complicated for XAI because of
technical challenges (i.e., the executable code must interface
with an external simulation) and real world constraints (i.e.,
we have little or no control of the simulated entities - they
have already been built or designed).

In the follow-on project to XAI for FSC, we faced these
challenges but sought a middle ground between building an-
other simulation-specific explanation system and demand-
ing to build the simulated entities ourself (as Swartout and
Moore built their own expert systems). Following this phi-
losophy, we re-engineered our system to support:

• domain independence - supporting reuse and the devel-
opment of common behavior representations while being
flexible enough to deal with simulation-specific idiosyn-
crasies

• the ability to explain the motivations behind entity actions

• modularity - allowing external components such as GUIs,
natural language generators, and tutors to interface with
the system

In the related work section, we discuss how the John-
son and van Lent et al. work falls short in addressing these
goals; we then present our XAI architecture designed specif-
ically to meet these needs. Our first XAI system using
this new architecture works with the One Semi-Automated
Forces Objective System (OOS), a tactical military simula-
tor and is described in the papers, (Gombocet al. 2005;
Coreet al. 2005).

The focus of this paper is our second instantiation of the
new architecture, the Virtual Humans simulator (Traumet
al. 2005). This was not designed as a tactical simulation,

but rather for the teaching of soft skills such as leadership,
teamwork, negotiation and cultural awareness. The current
scenario has one character, a virtual doctor who communi-
cates with students through spoken input/output as well as
generating animated gestures. The student plays the role of
a U.S. Army Captain whose unit is planning an operation
against insurgents in the same neighborhood as the clinic
run by the doctor. In order to minimize the risk to civilians,
the Captain is ordered to move the clinic to a safer location.
The doctor is not interested in moving; the Captain’s task is
to convince the doctor to move the clinic.

Although the core structure of our architecture has not
changed since we built XAI for OOS, we are continu-
ally making improvements such as the replacement of hard
coded questions with logical forms. In this paper, we present
an abbreviated case study describing the process of connect-
ing this architecture to the Virtual Humans simulator. It il-
lustrates the steps necessary to connect a simulation to an
external explanation system as well as giving an idea of what
parts of the system are reusable and what must be authored.
We then present a sample dialogue with interactions between
a student, automated tutor, and the XAI system. We do not
focus on the details of this tutor, but include it in this pre-
sentation to illustrate the usefulness of XAI in a pedagogical
context. In the future work section, we discuss taking fea-
tures specific to XAI for OOS and XAI for Virtual Humans
and making them domain-independent functions that can be
reused in new target simulations.

Related Work
In this section, we discuss two pieces of previous work on
generating explanations of entity actions during a simula-
tion: Debrief (Johnson 1994) and explainable artificial in-
telligence (XAI) for Full Spectrum Command (FSC) (van
Lent, Fisher, & Mancuso 2004). Debrief works with enti-
ties controlled by Soar (Laird, Newell, & Rosenbloom 1987)
agents in a tactical air combat domain. FSC was a collabo-
ration between game developers and academic researchers
who developed their own artificial intelligence system to
control simulated entities in this training tool for command-
ing a light infantry company.

Debrief uses Soar’s learning mechanism to save the
agents’ states during the simulation. After the simulation,
an agent gives a textual description of what happened and
the user is allowed to ask questions. To answer these ques-
tions, Debrief performs reflection by rerunning the agent and
selectively changing elements of its state to determine the
cause of its actions (including actions such as inserting a be-
lief into memory).

FSC has logging facilities that save each entity’s state:
simple values such as ammo status and a representation of
the task being executed (including its subtasks and how the
platoon is broken into squads). After the simulation is over,
FSC presents mission statistics and flags “interesting” time
points (an entity is wounded or killed, the first contact with
the enemy, task start and end times). The user selects a
time and entity and is able to ask questions about the entity’s
state.



Both systems were important first steps in adding expla-
nation capabilities to simulated entities, but neither approach
was suitable for our goals of domain independence and mod-
ularity. Debrief and XAI for FSC are specific to the AI sys-
tems controlling the simulated entities in those applications,
and not directly applicable to other AI systems.

(Gombocet al. 2005) was the first description of our
domain-independent XAI architecture; it described our ef-
forts to connect this architecture to the tactical simulations,
the One Semi-Automated Forces Objective System, OOS
and Full Spectrum Command. We noted that simulations
differ as to their “explanation-friendliness”, and one of the
key issues is how the simulation represents behaviors. Simu-
lations may encode behaviors directly in a programming lan-
guage, use planning operators, use a declarative rule format,
or combinations of the three. We argued against a purely
procedural representation because it provides no represen-
tation of the motivations underlying the behavior. Consider
the example of sending a fire team to clear a room. Once
the fire team is in position outside the room, the grenadier
throws a grenade before the team enters the room. This
could be encoded as a procedure (the step before entering
the room is always throwing the grenade) in which case, the
system cannot explain why the grenade was thrown. In the
next section, we summarize the XAI architecture presented
in (Gombocet al. 2005) as well as discussing what options
are available when dealing with an explanation-unfriendly
simulation.

XAI Architecture
Figure 2 shows our domain-independent XAI architecture.
The (Gombocet al. 2005) paper focused on the left side of
diagram and the problem of importing data from the simu-
lation. We use a relational database to store this informa-
tion because tactical military simulations typically produce
large log files; they record data at a fine granularity (e.g.,
OOS records the values of variables about once a second).
The Virtual Humans currently log a much smaller amount
of data, but the full power of the relational database may be
useful later if the logging in Virtual Humans becomes more
fine-grained. We focus on a subset of the virtual human’s be-
haviors: if we covered the entire range, then we would see
log files of comparable size as those in tactical simulations.

Assuming XAI is able to import the necessary informa-
tion from the simulation, the next step is to inspect the data
looking for “interesting” facts. The definition of interest-
ing will change with each application. For OOS, we used a
placeholder definition that highlighted when an entity fired
its weapon, or when it began, was half-way through, or com-
pleted a task. Collaboration with domain experts will help us
refine this definition. Because we developed an automated
tutor for the Virtual Humans, our definition of interesting re-
ferred to events that the tutor should discuss with the student
and it is the responsibility of the tutor to identify them. Al-
though we currently hand-annotate these teaching points, we
are automating the process using a heuristic-based approach
to identifying teachable moments in an exercise.

Once the XAI system is initialized, users select an entity
with which to speak and the time point in the simulation

they wish to discuss first. Users then query the entity about
the current time point by selecting questions from a menu.
The dialogue manager orchestrates the system’s response;
first using the reasoner to retrieve the relevant information,
then producing English responses using the natural language
generator (NLG). NLG fills slots in natural language tem-
plates with information from the database. NLG is coded
in XSL templates and takes advantage of XSL features such
as iteration and procedure calls (common tasks such as state
descriptions are shared among templates).

As noted in (Gombocet al. 2005), this is a best-case sce-
nario where the simulation makes available a rich behavior
representation containing, for example, entity goals and ac-
tion preconditions and effects. However, this does not mean
that if the simulation does not have such a representation we
cannot attempt to explain entity behavior.

Previous work in explaining expert system behavior (sum-
marized in (Swartout & Moore 1993)) dealt with a similar
problem; if the expert system’s inference engine contains
special features (not represented in the system’s knowledge
base) then the output of these features can still be explained
by hard coded explanation routines. However, if changes
are made to the special features without also updating the
explanation routines, there is a potential for inaccurate ex-
planations. Thus, explanations can still be made but at a
cost to the maintainability and robustness of the system.

In the case of representing simulation behaviors for XAI,
there are three options with associated costs and benefits:

1. automatically import the behaviors.cost: requires a rep-
resentation of goals and the preconditions and effects of
behaviors.benefit: high maintainability and robustness.
target: plan-based representations

2. semi-automatically import the behaviors.cost: must be
able to find goals, preconditions, and effects in behav-
ior representation.benefit:more maintainable and robust
than option 3, and makes fewer assumptions than option
1. target: rule-based representations

3. hand-build the XAI representation of the behaviors.cost:
low maintainability - any change in the behavior must be
duplicated in the XAI representation. Need subject matter
expert to author missing goals, preconditions, and effects.
benefit:makes no assumptions about the simulation’s be-
havior representation.target: procedural representations

The reason that we target rule-based representations with
option 2 is that some elements on the left hand side of rules
are preconditions (e.g., you must have ammunition to fire
your weapon), but other elements may be abort conditions
(e.g., do not fire your weapon when a friendly entity is in
the path) or internal bookkeeping (e.g., setting internal vari-
ables, making sure a rule does not fire twice). Similarly,
not all elements on the right hand side of rules are effects
and may instead also be internal bookkeeping. With such a
representation, we can hand-annotate the preconditions and
effects in these rules, then automatically import the behav-
ior. Although there is no guarantee that annotations will be
updated as developers change entity behaviors, at least this
meta-data is co-located with the original behavior represen-
tation.
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Figure 2: XAI Architecture

Collecting log files and scenario information is not trivial,
but here the options are simple: if the simulation does not
make information available for export, the XAI system can-
not answer questions about it. In our XAI for OOS system,
we entered some scenario and log information by hand to
build a proof-of-concept system, but this data is specific to
a particular simulation run, and some of the hand data-entry
must be repeated for each new simulation run. It is more fea-
sible to hand-author behavior representations because these
do not change between simulation runs.

Building a new XAI System
Connecting our current XAI system to a new simulation re-
quires several steps:

1. study the behavior representation and choose one of the
three approaches to importing behaviors as discussed in
the previous section.

2. implement data import for behaviors and log files

3. specify the question list for the domain

3a. write the logical form (LF) of each question
3b. write the query LF

4. augment the natural language generator to support the
new questions and their potential answers

5. create GUI

Specifying the question list for a new simulation requires
two steps. The first step is writing the logical form of the
question which is used to generate the English form of the
question. For the Virtual Humans, we had 110 distinct ques-
tions so by using the natural language generator to produce
the questions we could change how they were phrased with-
out rewriting all 110 questions. The second step is writing
the query to retrieve the answer from the database; we use
an abstract language called the query logical form to encode
queries (see below for more details).

The last step in connecting XAI to a new simulation is
building a new GUI or reusing a GUI from a previous XAI

system. Although every XAI system will have the same
basic GUI components (ways to select entities, times, and
questions, and displays of dialogue between user, XAI, and
tutor), to support replay of the simulation requires support
from the target simulation, and if XAI is a feature integrated
into the simulation, it will share the simulation’s GUI. Be-
cause of these constraints, we designed the GUIs of XAI for
OOS and XAI for Virtual Humans as separate components
that communicate with the rest of the system through XML
messages. Our abstract message format facilitates this play-
and-plug functionality. The messages convey the content of
menus such as the question list and list of time points as well
as user selections from these menus. The messages also up-
date the state of the dialogue between the student and tu-
tor and the dialogue between the student and XAI. The GUI
can display these menu choices and text in whatever widgets
(e.g., radio buttons, drop-down menus) it chooses.

XAI for Virtual Humans
Following the steps enumerated in the previous section, the
first task in connecting XAI to the Virtual Humans was to
study the behavior representation. In this case, the sim-
ulation developers not only had to model physical behav-
iors such as treating patients but also the behaviors under-
lying the utterances produced by the student and doctor
(e.g., committing, insisting), and the doctor’s mental rea-
soning (e.g., making the decision to help the Captain). The
model of physical actions contained preconditions and ef-
fects explaining the relationships between the actions (e.g.,
you need supplies to treat the patients). In importing this
model we found some bugs in the model, so it is more accu-
rate to say that we semi-automatically imported the physical
behaviors. Now that the bugs are fixed, we should be able to
fully automate this process.

The non-physical behaviors were implemented with hun-
dreds of rules developed in the Soar cognitive architecture
(Laird, Newell, & Rosenbloom 1987). Given enough time,
it should be possible to hand-annotate the goals, precondi-
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Figure 3: LF for “What is your negotiation stance?”

tions and effects in all these rules. As an initial step, our
implementation focused on the rules governing trust since
teaching trust building is one of the pedagogical goals of
the 2005 Virtual Humans system. As described in (Traum
et al. 2005), the Virtual Humans model trust as influenced
by three factors: familiarity, credibility, and solidarity. All
three have direct positive relationships to trust; the more the
doctor feels he knows you, feels you speak the truth, and
feels that you share common goals, the more he trusts you
(and vice versa). In our current prototype, we model single
steps of the doctor’s reasoning by linking rules to English
paraphrases (e.g., “the negotiation failed because you lost
the trust of the doctor”).

Once we designed the database format for the target sim-
ulation and wrote the code to import the data, the next step
involved encoding the questions to be answered by XAI in
the target domain (i.e., specifying the question itself, encod-
ing the relevant database queries, and necessary changes to
the natural language generation templates). Questions are
encoded in a logical form (LF), an abstract representation of
their content. A simplified graphical version of our XML
representation for the question, “What is your negotiation
stance?” is shown in figure 3. The logical form was designed
to support future plans to generate syntactic features of the
character’s language such as tense and modality rather than
hard coding them in templates. The other feature to note
is the variable, CURRENT which is substituted at runtime
with the current line being discussed. It is obvious that we
would not author separate questions such as “what is the ne-
gotiation stance at line 1” and “what is the negotiation stance
at line 2”. However, this same mechanism also allows us to
have one logical form for the questions, “why did the nego-
tiation fail?” and “why are you avoiding the negotiation?”.
Here, the runtime variable is the negotiation stance.

The logical form of the question is accompanied by an
abstract representation of the query (we call it the query LF)
to retrieve the answer. It also uses runtime variables so that
authors only have to write one query LF for the questions
“why did the negotiation fail?” and “why are you avoiding
the negotiation?”. The XAI reasoner translates the query LF
into the SQL query which is sent to the database. An area of
future work is to derive the query LF automatically from the
LF of the question.

The next step is modifying the set of XSL templates so
that the English form of the question can be generated as
well as the range of potential answers. Templates can be
reused to support new questions and their potential answers.
For example, there is one set of templates that generates
English descriptions of states and tasks. These are used to
describe states and tasks in questions as well as answers. In
future work, we intend to make our natural language genera-
tion more domain-independent by hard coding less English,
and adding templates encoding domain-independent aspects
of language such as syntax and morphology.

Sample Dialogue with XAI for Virtual
Humans

As mentioned in the introduction, after action reviews
(AARs) are the Army’s primary tool for learning from live
training exercises, and our goal is building AAR experiences
for simulated exercises. Our AAR GUI for the Virtual Hu-
mans is shown in figure 4. We currently lack a replay of
the simulation and instead show a transcript of the inter-
action between the student and the virtual doctor that took
place during the simulation (upper left of figure 4). Cur-
rently our prototype works with the following sample dia-
logue (C=Captain and D=Doctor):

C: Hello Doctor Perez
D: Hello
C: I have orders to move this clinic to another location
D: You want to move the clinic
C: Yes
D: Do you see that girl? She lost her mother today.
C: It is not safe here. We cannot protect you.
D: Protect me? Protect me from what?
D: You are going to attack?
C: Yes
D: I would have to refuse this decision
D: My patients need my attention now

The dialogue between the student and tutor appears in the
lower left of the AAR screen. In this session, the tutor asks
the student to use XAI to investigate what happened at line
10. The student then asks questions of the doctor using the
question list on the bottom right of the screen, and the dia-
logue between student and doctor appears in the upper right
of the screen. This is a prototype interface and we are cur-
rently experimenting with merging the two dialogue win-
dows, adding playback capabilities, and developing a more
usable question list.

Before the AAR begins, the tutor must analyze the dia-
logue searching for teaching points. Intuitively we can see
that the dialogue is unsuccessful. In line 10, the student re-
vealed secret information, and triggered the doctor’s ending
of the conversation. Examining the log files showing the
doctor’s mental state confirms that the dialogue was unsuc-
cessful and that line 5 (where the Captain asked the doctor to
move the clinic) and line 10 decreased trust. Our knowledge
of the rules governing the doctor helps us see opportunities
the student missed to gain trust in lines 3 and 10.

After loading the log files and behavior data into our XAI
system, we hand-annotate these teaching points. Because
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Figure 4: Interface to XAI for Virtual Humans

these are not subjective judgments, we anticipate that it will
be fairly simple to encode these intuitions, and annotate
teaching points automatically. The losses of trust and failure
of the negotiation appear directly in the log file. Determining
what the student should have done requires recognizing rules
that increase trust and checking their preconditions (e.g., ut-
tering a pleasantry such as “nice to meet you” is possible at
line 3 and would have increased trust).

Our automated tutor is a prototype and we experimented
with a hierarchical task network planner, JSHOP2 (a Java
derivative of SHOP (Nauet al. 1999)) as its control sys-
tem. In ongoing work, we are implementing a more reac-
tive approach because relying solely on a planner for control
meant that the planner had to be rerun after each student in-
put (we could not predict the student’s action), resulting in
an inefficient system. In this section, we will focus on using
XAI as teaching aid; the tutor also has the ability to question
students directly and evaluate their answers using key-word
spotting. Below are lines of a sample dialogue between tutor
and student (T=tutor and S=student); the student is given the
opportunity to identify his own errors and the student picks
line 10. The tutor determines that line 10 is best taught by
having the student investigate the problem using XAI.

1. T: In the simulation history window, can you select a
line where you think you could have done better?

2. S: Line 10
3. T: That’s right. There is room for improvement in

line 10.
In the XAI window, please ask the doctor some

questions and find out how this utterance
contributed to the failure of the negotiation.

While using XAI for the Virtual Humans, students are
presented with a question list like the one in figure 5. The
questions reflect information logged and our model of the
doctor’s behavior. The missing questions (q2, q4, etc.) are
“why” questions associated with q1 through q9. We illus-
trate how “why” questions work in the continuation of the
tutoring session below. The user asks the doctor about his
negotiation stance, and now a new question, q2, is available
(i.e., “why did the negotiation fail?”). The dialogue manager
keeps track of these even numbered questions and every time
we ask about line 10 this new question will be available.
4. S: Let’s start the investigation at line 10.
5. D: OK
6. S: What is your negotiation stance?
7. D: The negotiation is over and I refuse to move the

clinic
8. S: Why did the negotiation fail?
9. D: I no longer trusted the Captain

When the tutor instructs the student to use XAI, it acti-
vates a component called the investigation model tracer to
track the student’s progress with XAI. Currently, we define
an ideal investigation as a series of questions whose answers
provide the lessons to be learned. For this example the ideal
investigation is very simple and consists of q2 (which was
just asked) and q6. q6, “Why did your solidarity with the
Captain decrease?”, is made available after the student asks
q5.

One reason the ideal investigation is so simple is that the
student did not get very far in his negotiation. If the stu-
dent had done better, he would have needed to know about
the preconditions and effects of actions that concerned the



q1: What is your negotiation stance?
q3: What is your trust of the Captain?
q5: How was your solidarity with the Captain affected

here?
q7: How was the Captain’s credibility affected here?
q9: How was your familiarity with the Captain affected

here?
q11: How important do you feel being neutral is?a

q12: What action(s) could cause being neutral?
q13: What are the effects of running the clinic here?
q14: What action(s) could change being neutral?
q15: What are the preconditions of running the clinic here?
q16: What actions have being neutral as a precondition?

aThese virtual humans use utility theory to evaluate actions
and states of the world. This question allows the user to query
the relative importance of different states of the world from the
doctor’s perspective.

Figure 5: Sample question list for XAI for Virtual Humans

doctor such as running the clinic. Questions 11-16 allow the
student to learn about the doctor’s model of physical actions.
In the current version of the system, there are 16 actions and
17 states of the world that the user can ask about. Users
select actions and states from menus, and questions 11-16
change to match the selection.

The question list in figure 5 was generated when the cur-
rent task was “running the clinic in its current location”, and
the current state was “the doctor’s neutrality”. Running the
clinic in its current location, and running it in a new location
are the two most important tasks in the doctor’s world. Neu-
trality is important as we see in the dialogue continuation
below, because it is a prerequisite for running the clinic. If
the initial dialogue with the doctor had been more success-
ful, the student would need to consider hiring locals to move
the clinic instead of using U.S. troops.

10 S: What are the preconditions of running the clinic
here?

11 D: having supplies here, the patients being safe here,
the patients being here, the clinic being here
and being neutral

12 S: What action(s) could change being neutral?
13 D: negotiating with the Captain, cooperating with

the Captain and the Americans moving the clinic
14 S: What action(s) could cause the clinic being

[moved] there?
15 D: the Americans moving the clinic, locals moving

the clinic, and me moving the clinic

While the student was asking questions, the investigation
model tracer watched his progress. After several turns have
passed and the student has not asked q6, the tutor gives a
hint as shown below (actually the hint appears in a differ-
ent window). We use a standard model of hinting where the
hints get more specific until the tutor gives away the answer.
In this case, because we have not authored any hints, the tu-
tor gives away the answer. Our mechanism for “unlocking”
questions does not encode the relationships between the con-

tent of questions. So the tutor does not know that in order
to know why solidarity decreased, the student must know
that solidarity did decrease. We are working on fixing this
problem in our next version of the system. Let’s assume that
the student realizes he must unlock q6 and asks q5 as shown
below. Once the student has asked q6, the tutor recognizes
that the investigation is complete and reengages the student
in dialogue (in the tutor-student dialogue window).1

16 T: Please ask question #6
17 S: How was your solidarity with the Captain

affected here?
18 D: It decreased.
19 S: Why did your solidarity with the Captain

decrease?
20 D: The Captain is committing to performing an

undesired act.
21 T: Good job. You found out that admitting to the

planned attack decreased the doctor’s trust of you,
which caused the negotiation to fail...

Future Work
In this section, we focus on the issues of domain indepen-
dence and modularity, comparing our two systems, XAI for
OOS and XAI for Virtual Humans. We discuss plans to take
domain-dependent aspects of these systems and make them
available as general features that can be activated or deac-
tivated as appropriate. For example, XAI for OOS has the
feature of removing non-applicable questions from its ques-
tion list; if an entity did not fire its weapon at the current
time point then the question, “what are you shooting at?”,
will be removed from the question list. However, there are
pedagogical ramifications to this “feature”. Consider a ques-
tion from the Virtual Humans domain, “How was your sol-
idarity with the Captain affected here?”. We may want to
display this question even if solidarity did not change be-
cause we want the student to realize that solidarity could
have changed. Thus, we will allow the feature to be deacti-
vated on a question-by-question bias.

Another feature present in XAI for OOS is the ability to
use HTML formatting to include links to entities and times.
Because entities and times are often the topic of conversa-
tion, we added the ability for users to click on mentions of
entities and times to change the entity or time as opposed to
selecting them from the entity or time menu. The XAI-for-
OOS GUI interprets tags in the natural language generator’s
output in order to make this linkage. We will formalize this
convention in our XML message format.

Other features are associated with dialogue context; in the
sample dialogue, we saw that asking certain questions of the
virtual doctor made new questions available (i.e., question
unlocking). In XAI for OOS, entities “introduce” them-
selves when you first select them (e.g., “I am the fire team
leader of Blue Fireteam 1...”), and in some contexts, users
can ask the question, “can you give me more detail?”. Cur-
rently XAI for Virtual Humans and XAI for OOS use ad-

1Although not shown in these excerpts, the goal is to encour-
age the student to be honest but vague (e.g., ”I cannot discuss our
operational plans”).



hoc models of context limited to the information needed to
support features such as question unlocking. We will build
a general model of context storing each line of the student-
XAI-tutor dialogue and who produced it. To enable question
unlocking, we will store the logical form of questions asked
and answers produced by the system. Questions will refer-
ence the dialogue context by listing applicability conditions
rather than relying on a domain-specific context checking
mechanism. This model of context will also be useful for
the natural language generator, allowing it to tailor its output
based on the context and produce more natural and readable
text.

Conclusion
Rather than simply writing an explanation system that only
worked for its target AI system and simulator, we used our
generic and modular architecture for explainable artificial
intelligence (XAI) systems in building XAI for the One
Semi-Automated Forces Objective System, a tactical mili-
tary simulation (Courtemanche & Wittman 2002). This ar-
chitecture continued to evolve as we worked on XAI for Vir-
tual Humans, a simulation designed to teach soft skills such
as leadership, teamwork, negotiation, and cultural aware-
ness. In this paper, we presented an abbreviated case study
on how to connect an explanation system to a target simula-
tion and in particular, model behaviors and add support for
new questions. We also showed how our prototype tutor uses
XAI as a teaching tool, getting the student to understand his
simulated negotiation partner’s reasoning and mental state.

The key point of the XAI architecture is its domain inde-
pendence and modularity. Every XAI system will have the
basic components in figure 2 but their exact implementation
will vary based on project requirements. For example, our
reliance on a relational database and SQL queries was based
on the requirement of handling a large dataset size and our
short development times. The creation of the query logical
form was a step toward a more declarative representation
and future work may include more powerful reasoning and
storage components.

We are currently continuing to work in the domain of ne-
gotiation with cultural awareness and are collaborating with
a project called ELECT (Enhanced Learning Environments
with Creative Technologies) here at the Institute for Cre-
ative Technologies. The goal of ELECT is to build a sys-
tem including explanation and tutoring to be used directly
in Army training and involves several external collaborators
contributing subject matter expertise. We plan to work with
the Army Research Institute to evaluate the effectiveness of
our tutor and the XAI system.
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